
Received 23 July 2020; accepted 10 October 2020. Date of publication 26 October 2020;
date of current version 23 November 2020. The review of this paper was arranged by Associate Editor Dr. Song Guo.

Digital Object Identifier 10.1109/OJCS.2020.3033974

Efficient Detection and Classification of
Internet-of-Things Malware Based on Byte

Sequences from Executable Files
TZU-LING WAN 1, TAO BAN 3 (Member, IEEE), SHIN-MING CHENG 1,2 (Member, IEEE), YEN-TING LEE1,
BO SUN4, RYOICHI ISAWA3, TAKESHI TAKAHASHI3 (Member, IEEE), AND DAISUKE INOUE3 (Member, IEEE)

1Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
2Research Center for Information Technology Innovation, Academia Sinica, Taipei 106, Taiwan

3National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan
4Saitama Institute of Technology, Saitama 369-0293, Japan

CORRESPONDING AUTHOR: TAO BAN (e-mail: bantao@nict.go.jp)

This work was supported by the Ministry of Science and Technology, Taiwan, under Grants 109-2636-E-009-022 and 109-2218-E-011-007.

ABSTRACT Simple implementation and autonomous operation features make the Internet-of-Things (IoT)
vulnerable to malware attacks. Static analysis of IoT malware executable files is a feasible approach to under-
standing the behavior of IoT malware for mitigation and prevention. However, current analytic approaches
based on opcodes or call graphs typically do not work well with diversity in central processing unit (CPU)
architectures and are often resource intensive. In this paper, we propose an efficient method for leveraging
machine learning methods to detect and classify IoT malware programs. We show that reliable and efficient
detection and classification can be achieved by exploring the essential discriminating information stored
in the byte sequences at the entry points of executable programs. We demonstrate the performance of the
proposed method using a large-scale dataset consisting of 111K benignware and 111K malware programs
from seven CPU architectures. The proposed method achieves near optimal generalization performance for
malware detection (99.96% accuracy) and for malware family classification (98.47% accuracy). Moreover,
when CPU architecture information is considered in learning, the proposed method combined with support
vector machine classifiers can yield even higher generalization performance using fewer bytes from the
executable files. The findings in this paper are promising for implementing light-weight malware protection
on IoT devices with limited resources.

INDEX TERMS Computer security, machine learning, binary code, malware analysis, static analysis.

I. INTRODUCTION
Recent proliferation of Internet of Things (IoT) devices
brought revolutionary change to information processing and
daily life. A survey from Gartner [1] predicted that the number
of IoT-enabled devices will reach 24 billion by 2020. This
number was, in fact, surpassed by 10% by the end of 2019
as reported in [2]. This exponential growth in popularity of
IoT applications and devices has given rise to new security
challenges. With heterogeneous central processing unit (CPU)
architectures, constrained resources, limited interfaces, unsafe
default configurations, and difficult-to-patch software imple-
mentations, IoT devices have been found to be vulnerable to
many critical security breaches [3], [4]. According to a report

of security researchers from F-Secure, there were 2.8 billion
cyberattack packets observed at their global honeypot network
in the second half of 2019 [5]. Moreover, the source-code
release in the infamous Mirai attack triggered the spread of
IoT attacks and the growth of malware families [6]–[8]. How
to protect vulnerable IoT devices from being compromised
and how to mitigate attacks from IoT devices have become
critical, challenging issues.

Detecting and classifying malware is considered to be an
essential step before further behavior analysis of malware to
promote malware prevention and mitigation. However, CPU
architecture diversity and IoT-device resource constraints ren-
der traditional signature-based protection methods unsuitable,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

262 VOLUME 1, 2020

https://orcid.org/0000-0002-9796-0643
https://orcid.org/0000-0002-9616-3212
https://orcid.org/0000-0002-9796-0643

thereby hindering malware precautions and countermeasures.
While dynamic analysis, executing binary programs in a sand-
box environment to monitor their run-time behavior, is consid-
ered effective for Windows malware analysis, it suffers from
difficulties in performing consistent analysis upon varying
CPU architectures. Moreover, IoT devices with limited system
resources typically do not support on-device dynamic analy-
sis, thereby in turn rendering a malware protection method
based on dynamic analysis unfeasible.

Consequently, existing research has been focusing on ef-
ficient approaches based on static analysis, such as reverse
engineering of the binary programs of IoT malware [9]. In
related work [10]–[12], experimental results with high de-
tection rates were obtained by exploring the operation codes
(opcodes) and control flow graphs (CFGs) of IoT malware.
However, this related work did not take factors such as CPU
architecture into consideration, and the evaluation datasets
suffered from drawbacks such as limited scale and class im-
balance, which can result in biased results. Moreover, these
approaches are considered to be resource intensive, because
opcode sequences can be obtained only from advanced reverse
engineering tools.

In contrast to recent malware or applications on Windows
and Android, current IoT programs tend to be implemented
following common programming principles such as simplicity
and straightforwardness – obfuscation and evasive techniques
are used only rarely. Thus, we can take advantage of their
simplicity to devise an efficient and effective method for de-
tecting and classifying IoT malware. In this paper, we take
the sequence of bytes beginning at the entry point as the
input feature for machine learning methods. Generated by
a compiler or a linker, the entry point of an executable file
is the point at which the first instructions of a program are
executed. Consequently, byte sequences from the entry point
provide identifying information regarding the principal action
and semantics of the program, which can be used to differen-
tiate malware programs from benign programs (benignware).
Furthermore, compared with the opcodes or CFGs, extracting
the byte sequences from an executable file is straightforward
and does not require advanced tools. Experiments have shown
that we can achieve accurate malware detection and malware
family classification based on a few hundred bytes beginning
from the entry points.

To verify the performance of the proposed malware detec-
tion and family classification method across different CPU
architectures, we created a large-scale multi-platform dataset
consisting of IoT malware and benignware from a wide range
of CPU architectures, including ARM, MIPS, x86, x86_64,
PowerPC, SPARC, and Renesas SH. The dataset includes
111K benignware and 111K malware. The benignware sam-
ples were collected from commercial IoT-device vendors, in-
cluding D-Link, Zyxel, Netgear, IDIS, Belkin, and MikroTik.
The malware samples were downloaded from VirusTotal [13]
and include the most recent malware from eight families,
Mirai, Tsunami, Hajime, Dofloo, Bashlite, Xorddos, Android,
and Pnscan.

The machine learning methods examined to detect and
classify IoT malware include support vector machine (SVM),
k-nearest neighbor (KNN), naive Bayes (NB), and multi-
layer perception (MLP). Experimental results show that the
proposed method has promising generalization performance:
more than 99.96% accuracy for malware detection and more
than 98.47% accuracy for malware family classification, re-
spectively. The results show that byte sequences from the
entry point can serve as effective and efficient input features
for IoT malware analysis. An efficient malware protection and
mitigation solution can be implemented based on the findings
in this paper.

The contributions of the paper are as follows.
� We propose using byte sequences at entry points of ex-

ecutable and linkable format (ELF) executable files as
input features for IoT malware analysis;

� we provide a fast implementation of the N-gram method
which is suitable for dealing with byte sequence features;

� we evaluate a number of popular machine learning algo-
rithms on the feature set to demonstrate the efficacy and
efficiency of the proposal;

� we create the largest dataset thus far for IoT malware
analysis and compare the proposed method with related
work;

� we reveal the necessity to perform CPU-specific analysis
on IoT malware and provide solid results as proof of
concept.

II. BACKGROUND AND RELATED WORK
In this section, we provide background information regarding
IoT malware and review related work on IoT malware detec-
tion and classification with a focus on static analysis.

A. IOT MALWARE
Owing to commonly known vulnerabilities, such as weak,
guessable, or hard-coded passwords, lack of secure update
mechanisms, and insecure network services, IoT devices have
become the most attractive targets of malware. By taking
advantage of the vulnerabilities found on victimized devices,
attackers can take control of the infected devices and force
them to join the army of zombie devices known as the bot-
net. Consider Mirai, an infamous IoT malware, as an ex-
ample. This malware scans vulnerable IoT devices and con-
ducts brute-force login attacks using telnet or the Secure Shell
(SSH) protocol, based on a predetermined dictionary of lo-
gins and passwords. Once login is successful, it downloads
the malware executables and takes control of the victimized
system [14] through a stepping stone commonly known as
a command & control (C&C) server. After a botnet con-
sisting of multiple infected devices is created, the attacker
can conduct a distributed denial-of-service (DDoS) attack on
any target through the C&C server. The release of the Mirai
source code on GitHub in September 2016 led to a burst of
attacks abusing the botnet, followed by the emergence of a
large number of modified variants taking advantage of other
vulnerabilities. For example, instead of taking advantage of

VOLUME 1, 2020 263

WAN ET AL.: EFFICIENT DETECTION AND CLASSIFICATION OF INTERNET-OF-THINGS

TABLE 1. Summary of Related Work

telnet or SSH, recent Mirai variants use known Remote Code
Execution vulnerabilities to conduct attacks.

Mirai’s source code is based on its predecessor, Bashlite or
Gafgyt, first discovered in 2014. While they both make use
of the vulnerabilities of known authentication credentials on
IoT devices and share many similarities, Mirai improves on
Bashlite on multiple fronts. See [14] for more information on
these two botnets.

Another well-known malware family is Hajime, which was
first identified by researchers in Rapidity Network [15]. Al-
though some of the attack patterns of Hajime are similar to
those of Mirai, they communicate with bots differently. Rather
than using a C&C server, Hajime makes use of a poplar peer-
to-peer (P2P) distributed hash table to download files [16].

Other well-known malware that target IoT devices include
Dofloo and Xorddos. Dofloo, also known as Spike, is a back-
door malware that conducts DDoS attacks. It encrypts its com-
mands using the Advanced Encryption Standard to avoid de-
tection and analysis [17]. Xorddos is a recent botnet malware
that targets Linux hosts on cloud systems. Recent research
reports that new variants of Xorddos begin to target exposed
Docker servers by searching for hosts with exposed Docker
application programming interface (API) ports [18], [19].

B. MALWARE DETECTION AND MALWARE FAMILY
CLASSIFICATION
Because traditional signature-based approaches cannot detect
unknown malware, most security vendors today have adopted
machine learning based solutions for malware detection and
mitigation. Machine learning methods can learn the feature
patterns from existing malware and use created models to
detect novel malware with high efficiency and accuracy. In
this section, we survey the most recent research on machine-
learning based IoT malware analysis. The basic information
of all of the reviewed methods is summarized in Table 1.

1) OPERATION CODE (OPCODE)
As the portion of machine language instructions that spec-
ifies the operations to be performed, opcodes are regarded
as one of the common features for malware detection.

Pajouh et al. [11] took the opcode sequences as distinguishing
features in the long short-term memory (LSTM) algorithm
and obtained 98.18% accuracy on a dataset consisting of 281
ARM-based malware and 270 ARM-based benignware. Dara-
bian et al. [12] counted the number of occurrences of each
opcode, and found that malware uses some specific opcodes
more frequently than benignware. The experimental results
showed that the classifier could reach an accuracy of 99% on
ARM-based IoT samples. The classic N-gram representation
has also been applied to opcodes to extract distinguishing
string features. Ding et al. [20] extracted opcode N-gram
features after using a disassembler for Windows portable exe-
cutable (PE) 1 files and trained a deep belief network to detect
malware with 98% accuracy. Similarly, Kang et al. [21] pre-
sented an approach based on opcode N-gram features for An-
droid malware family classification using NB, SVM, partial
decision tree (PART), and random forest. The experimental
results showed that SVM can achieve a 98% F-measure in
both malware detection and malware family classification.

2) GRAPH-BASED FEATURES
The most popular graph-based feature examined for malware
analysis is CFG – a data structure that represents the order
of opcode execution in a file. Alasmary et al. [22] extracted
CFGs and characterized the executables by graph features
including such features as numbers of nodes and edges, den-
sity, centrality, shortest path. Convolutional neural networks
(CNNs) were then used for the analysis and yielded 99.66%
accuracy for detection and 99.32% accuracy for malware fam-
ily classification. Nguyen et al. [23] focused on the detection
of IoT botnets by using printable string information (PSI)
graphs as the primary feature for learning. They used a deep
graph convolutional neural network (DGCNN) classifier and
obtained an accuracy of 92%.

1Portable executable format is a file format for executables, object code,
DLLs and others files used in 32-bit and 64-bit versions of Windows operating
systems.

264 VOLUME 1, 2020

3) OTHERS
Su et al. [24] introduced a method for converting an ELF file
into a gray-scale image and conducting learning on the image
set. The algorithm first converts the file to a binary string, then
combines the binary values into a vector of bytes, and finally
transforms the vector into a gray-scale image. An accuracy of
93.33% on malware detection was obtained by applying deep
learning to the images.

Shahzad et al. [25] extracted 383 structural features includ-
ing section headers, symbol sections, and program headers
from ELF files. Then, forensic analysis was used to sort and
select useful features for learning. They evaluated the perfor-
mance by using rule-based machine learning classifiers such
as repeated incremental pruning to produce error reduction
(RIPPER) and obtained accuracy values greater than 99%.

Although these machine learning based solutions were able
to achieve a high accuracy in malware detection and clas-
sification, they did not consider an essential feature of IoT
executables, the diversity of CPU architectures. Since the in-
struction sets used on different CPU architecture are different,
knowledge regarding an executable file compiled on one CPU
architectures provides little generalization information for one
compiled on another CPU architecture, even if they are based
on the same source file. Therefore, analysis on a dataset con-
sisting of executables from different CPU architectures is typi-
cally not effective. While the dimension of the feature space is
significantly increased to cover a superset of opcodes from all
CPU architectures, little gain in generalization performance
can be expected.

In this sense, graph-based features that capture the high-
level characters of software behavior have the potential to
provide cross-platform generalization ability. Nevertheless,
they can also suffer from other drawbacks. First, as the gen-
eralization performance typically depends on the granularity
of the characterizing features, high-level but coarse features
typically do not yield better results than low-level refined fea-
tures. Second, extracting graphs from executables requires a
consistent tool across all CPU platforms, and this is never easy
to attain. Finally, the computing resources for obtaining graph
properties when the graph is large might not be available on
IoT devices with limited system resources.

C. BYTE SEQUENCES IN STATIC ANALYSIS
An executable file, or executable, commonly takes the form
of a binary file composed of sequences of bytes that contain
information regarding commands and data that can be inter-
preted by a machine to perform specific functions. Schultz
et al. [26] used byte sequences, DLL calls, and strings as
features in a machine learning method to detect PE malware
and achieved an accuracy of 97.11%. Li et al. [27] presented
a PE-malware detection method based on association rule
mining. They used N-grams to represent segments of byte
sequences and reported an accuracy of 94.67%. Ban et al. [28]
extracted a finite-length byte sequence at the entry point of an
executable to perform packer identification.

D. ENTRY POINT
Generated by the compiler, an entry point of an executable
represents the starting execution address of a program. The
executable file format of Linux is ELF and Listing 1 shows
the structure of a 32 bit ELF header, where the entry point is
defined in the e_entry field.

Listing 1 The structure of 32 bit ELF header
typedef struct elfhdr {

unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

} Elf32_Ehdr;

Consider a C program as an example. Typically, a program
is executed from the main() function, and GNU Compiler
Collection (gcc) uses _start symbol as an entry point to
initialize the main() function. However, a different entry point
address can be assigned intentionally during compilation.
Therefore, the entry point of one program compiled by an
author is likely different from that of a program created by
another author. The entry point also changes when an exe-
cutable is packed and encrypted. Although packers are well
developed and commonly used as an obfuscation technique
with Windows PE files, there have been very few cases ob-
served as with IoT executables.

III. METHODOLOGY
In this section, we describe the details of the proposed method.
Byte sequences obtained from executable files are taken as the
input features for machine learning algorithms for performing
IoT malware detection and family classification. Fig. 1 shows
an overview of our method which consists of three parts:
collecting ELF files (samples in the dataset) from different
sources, feature extraction and labeling for each sample, and
model training and evaluation following a standard pipeline of
machine learning processing.

A. DATA COLLECTION
According to a recent survey performed through Eclipse [29],
Linux OS has become the dominant OS for IoT gadgets,
working on more than 80% of the market. Consequently,
Linux OS has become the major target of IoT-oriented mal-
ware programs. Malware arrives at IoT devices in the form of

VOLUME 1, 2020 265

WAN ET AL.: EFFICIENT DETECTION AND CLASSIFICATION OF INTERNET-OF-THINGS

FIG. 1. Overview of IoT malware analysis framework.

compiled ELF files, the standard binary file format for Unix
and Unix-like systems. Designed to be flexible, extensible,
and cross-platform, ELF can be used by different operating
systems on different hardware platforms.

We collect benign ELF files from officially released IoT
firmware images. As these executables are provided by IoT
vendors of Linux-based systems, they are taken as benignware
and are labeled negative in the dataset. The procedure of
collecting benignware is as follows:

1) Firmware images are downloaded from various IoT ven-
dors including D-Link, Zyxel, Netgear, IDIS, Belkin,
and MikroTik. During this process, customized down-
loading scripts are created to facilitate automated down-
loading from different IoT vendors.

2) After firmware images are collected, binwalk [30]
– a command that checks the file type – is used
to extract the ELF files from system locations such
as “/bin”, “/etc”, “/dev”, “/home”, “/lib”,
“/mnt”, “/opt”, “/root”, “/run”, “/sbin”,
“/tmp”, “/usr”, and “/var”.

3) Duplicated files are removed from the collection by
checking their uniqueness using hash functions such as
Secure Hash Algorithm 1 (SHA1).

4) These files are sent to VirusTotal and examined by dif-
ferent antivirus vendors to verify their class labels.

We collect malicious ELF files from VirusTotal [13] – a
website that aggregates many antivirus products and online
scanning engines to check for viruses that might be missed
by a single antivirus engine. The malware samples belong
to eight families including Mirai, Tsunami, Hajime, Dofloo,
Bashlite, XORDDoS, Android, and Pnscan. The family name
of a sample is decided by majority vote of the antivirus re-
ports from VirusTotal. For example, if eight antivirus engines
label a particular malware sample as Mirai, and two label

it as Tsunami, then we label the sample Mirai. A sample is
removed from the dataset if there is a tie or if fewer than five
engines vote for the winning label.

Previous work on binary file analysis has revealed that the
binary code at the entry point of packed binaries contains
basically information regarding the packer [28], [31]. For a
packer-obfuscated ELF file, the entry point no longer contains
run-time information regarding the original entry point of the
program. To retain the coherence of the dataset, we remove
the packed samples detected by Radare2 [32].

B. FEATURE EXTRACTION
The entry point indicates the position which the processor
enters a program or a code fragment and begins execution.
Since executables generally perform different operations at
the starting point, we use the byte sequences at entry points
to detect whether an ELF file is malware. As Fig. 2 shows,
executables created from different sources generally differ
drastically. For a program that is subject to modification, for
example, subvariants of the same malware, the code sequence
tends to be highly similar to the original as long as the source
code that corresponds to the starting section of the executables
is not totally rewritten.

The procedure for creating a numerical feature vector from
a byte sequence extracted at the entry point is as follows.
First, we locate the entry point of an ELF file by checking
the e_entry field of the ELF header. Second, we use pwn-
tools [33] to take the first L bytes starting from the entry point
as the input of the algorithms. Choosing an appropriate L
value enables us to ignore irrelevant information such as data
segments following the code segment. Moreover, the L value
also helps to balance the quantity of information explored in
the code related to the computation complexity of the learn-
ing. For a file that is not sufficiently long, the byte sequence is

266 VOLUME 1, 2020

FIG. 2. Opcode sequences extracted at the entry points of different executables.

FIG. 3. Example of extracting 4-grams from a byte sequence (L = 10).

zero-padded to length L. Then, we follow the feature extrac-
tion conventions for N-gram models. Typically, N-grams are
used in natural language processing to build learning models
based on contiguous sequences of length N . An N-gram in
our setting represents a substring (contiguous bytes) of length
N extracted from the original byte sequence. Fig. 3 shows an
example of extracting 4-gram features from a byte sequence.

Based on the N-gram representation, an executable can be
formulated as a numerical vector, where each dimension of
the vector corresponds to a specific N-gram and the value
along the dimension is the frequency of the N-gram in the
byte sequence. Owing to the extraordinarily high dimension
of all N-grams occurring in the dataset, we use a sparse repre-
sentation to reduce the memory consumed during learning.

C. CLASSIFICATION METHODS
The sparsity and high dimensionality of the N-gram rep-
resentation render it intractable for many machine learning

algorithms. In this section we select four classification meth-
ods that can deal efficiently with high dimensional sparse data,
SVM, KNN, NB, and MLP. We use these classifiers to build
prediction models for the dataset created under the process
introduced in Section III-B.

SVM is a supervised learning model that finds a hyper-
plane with maximized margin to distinguish samples from
two classes. We use SVM to solve a multi-class classification
problem following the one-against-all convention: For an m-
class problem, we first construct m binary SVM classifiers,
each of which separates one class from the rest. Then, we
determine the predicted label by a majority vote of all of the
classifiers.

KNN is a popular classification algorithm – a sample is
classified by a majority vote of its k-nearest neighbors. The
results of KNN indicate well how much discriminant infor-
mation can be captured in the similarity function defined on
the feature vectors. As generalization is deferred until a query
sample is known, the computational cost of KNN in prediction
(depending primarily on nearest neighbor search for the query
sample) tends to be intensive even for datasets with moderate
sample sizes.

NB is a classifier based on Bayes’ theorem. It assumes that
all of the features are statistically independent – the value of
a particular feature is independent of the value of any other
feature. While requiring that the number of parameters be
linear in the number of features, NB classifiers are highly
scalable, a fact that satisfies the requirements of our learning
task well.

MLP is a class of feedforward artificial networks consisting
of at least three layers, an input layer, a hidden layer, and an

VOLUME 1, 2020 267

WAN ET AL.: EFFICIENT DETECTION AND CLASSIFICATION OF INTERNET-OF-THINGS

FIG. 4. Sample distribution among different CPU architectures.

output layer. MLP makes use of a supervised learning tech-
nique called backpropagation for training. In our experiment,
we used two hidden layers of 50 nodes each.

IV. EXPERIMENT
We evaluated the performance of SVM, KNN, NB, and MLP
on two learning tasks: malware detection, which aims to dif-
ferentiate malware executables from benign ones, and mal-
ware family classification, which aims to predict the category
of a malware executable among known families. Our experi-
ments are based on scikit-learn [34] implemented in Python
3.7.

A. DATASET
Following the process introduced in section III-A, we col-
lected 222,963 ELF executable files from IoT devices. In the
dataset, 111,353 files are benignware and 111,610 are mal-
ware. The distribution of the samples among different CPU
architectures is shown in Fig. 4. As shown in the figure, the
two most popular CPU architectures for malware are ARM
and MIPS. We failed to collect sufficiently many benignware
samples for Renesas SH and SPARC: no firmware images are
publicly available for Renesas SH, and most of the firmware
images of SPARC are encrypted. Fig. 5 shows the distribution
of the malware executables among different malware families.
The numbers of Mirai and Bashlite samples are much greater
than the others because of the release of source code.

B. VISUALIZATION
To enhance understand of the data distribution, we use uni-
form manifold approximation and projection (UMAP) [35]
to visualize the data in a two-dimensional (2-D) embedding
space. UMAP is a nonlinear dimension reduction method that
can be used to approximate the relationships among high-
dimensional data in a low-dimensional layout. It is compu-
tationally efficient and can deal with large high-dimensional
datasets. Fig. 6(a) shows the 2D visualization result of a subset
of 100 benignware samples and 100 malware samples with
L = 512 and N = 4. In the figure, a green point represents a

FIG. 5. Sample distribution among different malware families.

FIG. 6. UMAP 2D visualization of sample distribution.

benignware sample and a red point represents a malware sam-
ple. We can see that despite the low dimension of the layout,
there is high separability between benignware samples and
malware samples: a benignware sample falls close to other
benignware samples but apart from malware samples. High

268 VOLUME 1, 2020

TABLE 2. Settings for Parameter Tuning

separability implies good prediction performance for malware
detection.

The distribution of a subset of 200 malware samples among
different malware families is shown in Fig. 6(b). In the figure,
each unique color indicates a different malware family. In
contrast to the previous figure, except for the two malware
families, Android and Tsunami, there are no clear boundaries
that can separate samples from different malware families in
the 2D embedding. This indicates that malware family classi-
fication is more difficult: as samples from different malware
families are intermingled, there is a greater chance for a clas-
sifier to make incorrect predictions.

C. PARAMETER TUNING
As is commonly known, the generalization performance of
learning algorithms relies heavily on the hyperparameters
used to train the model. Given a training set A and a test
set B, we tune the parameters of the algorithms to be used
following the procedure below, using grid search. For each of
the parameters of a given model, we define a series of values,
i.e., grid values, then all possible combinations of grid values
on different parameters form a pool of parameters settings.
From the pool, the parameter setting with the best classi-
fication result is determined using 10-fold cross validation.
First, A is shuffled randomly and split evenly into ten groups,
Ai(i = 1, . . . , 10). For the i-th run, Ai is taken as the testing
set while the rest of the data, A\Ai, is used as the training
set. Then the classification model is trained based on A\Ai
and evaluated on Ai. For each parameter setting, this process
is repeated 10 times over Ai(i = 1, . . . , 10) and the average
accuracy is used to measure the classification performance of
the parameter setting. Table 2 lists the grid values of all the
parameters that we have examined for each classifier.

As an example of parameter tuning, Fig. 7 shows the tuning
process of the length parameter, L, for malware detection
using SVMs. The blue line depicts the overall prediction ac-
curacy averaged from all of the combinations of (N , C) for
each L parameter. The green line shows the average train-
ing time used to build the models with each L parameter.
From the graph, we can see that the accuracy first grows
as L increases from 128 to 384; and begins to drop after L
surpasses 640. At the same time, the training time continues
rising as L increases. The best accuracy is obtained at L = 384
and L = 640. However, the training time at L = 640 almost
doubles that at L = 384. This result suggests that 384 is the
most suitable input byte-length value for SVMs.

Fig. 8 shows the process of tuning parameter N for SVMs.
Lines represent the averaged accuracy obtained with different
N values (from three to seven in the graph). According to the

FIG. 7. Tuning parameter L using 10-fold cross validation for SVM. L is
selected from {128, 256, 384, 512, 640, 768, 896, 1024}.

FIG. 8. Tuning parameter N using 10-fold cross validation. N is selected
from {3, 4, 5, 6, 7}.

previous result on tuning the L parameter, L = 384 gives the
best result. With this setting, N = 4, N = 5, N = 6 yield the
same highest accuracy. We chose N = 4 for SVMs in later
evaluation as it provides a feature space with far fewer dimen-
sions and thus consumes less training and prediction time.

D. EVALUATION METRICS
The parameter setting with the best classification result is
selected from the pool to train an overall model using A and
then the model is evaluated on test set B. We make use of
widely used metrics including accuracy, precision, recall, and

VOLUME 1, 2020 269

WAN ET AL.: EFFICIENT DETECTION AND CLASSIFICATION OF INTERNET-OF-THINGS

TABLE 3. Evaluation Results for Malware Detection

TABLE 4. Evaluation Results for Malware Family Classification

false positive rate (FPR) to measure the generalization perfor-
mance of the classifiers. These metrics are defined based on
the following intermediate measures.
� True positive (TP): samples classified correctly as posi-

tive;
� False positive (FP): samples classified incorrectly as pos-

itive;
� True negative (TN): samples classified correctly as neg-

ative;
� False negative (FN): samples classified incorrectly as

negative.
Accuracy is the probability of test samples being classified

correctly:

Accuracy = T P + T N

M
, (1)

where M is the total number of samples used for evaluation.
Precision is the probability of predicted positives being clas-
sified correctly:

Precision = T P

T P + FP
. (2)

Recall is the probability of the samples in the positive class
being classified correctly:

Recall = T P

T P + FN
. (3)

FPR is the probability of negative samples being assigned
incorrectly to the positive class:

FPR = FP

FP + T N
. (4)

E. NUMERICAL RESULT
We design two experiments to demonstrate the performance
of the proposed approach. The first experiment is conducted
on an overall dataset consisting of all of the samples in our
dataset. In the second experiment, the evaluation is conducted
on eight subsets formed by taking all samples from the same
CPU architecture respectively. See Fig. 4 for information re-
garding the sizes of the subsets. Following the procedure in-
troduced in section IV-C, we chose the best parameter settings
for each classifier independently. The selected parameter set-
tings are shown in the rightmost column in Tables 3 and 4. We
report the evaluation results based on 10-fold cross validation.

FIG. 9. Malware detection results using SVM with N = 4.

That is, results in the tables are the average numbers over ten
independent runs with the training and test sets determined by
10-fold cross validation.

1) IOT MALWARE DETECTION
The malware detection experiment aims to evaluate the dis-
criminating performance of the proposed method in differ-
entiating malware samples from benignware samples. The
typical scenario involves raising some form of security alert
to warn the user when a downloaded program is recognized as
malware. Table 3 shows the evaluation results of all examined
classifiers. All of the classifiers yield near optimal results with
accuracy greater than 99%, indicating that the byte sequences
at the entry point carry essential information for differenti-
ating malware from benignware on all IoT platforms. SVM
provides the best accuracy of 99.96% with a slightly longer
training time than other methods. In addition, it requires the
least time for making a prediction. SVM requires only a D
dimensional vector and a bias parameter to make a prediction,
where D is the dimension of the feature vectors. Its high
generalization performance and efficiency in prediction make
it the most suitable for IoT devices.

Taking SVM as an example, Fig. 9 shows how input byte
length affects the performance of the classifier. The best ac-
curacy is retained when L varies from 256 to 640, and the
accuracy drops when L is set to values outside of this range.
This result indicates that for IoT executables, the first 300 to
600 bytes carry the most discriminating information to differ-
entiate malware from benignware. A value less than 300 might
lead to information loss and a value greater than 600 might
introduce information extraneous to the data. In this task,
because of the near optimal performance of the algorithm, the
precision and recall on the malware class are very close to the
accuracy values, shown as overlapped lines in the figure.

270 VOLUME 1, 2020

FIG. 10. Malware family classification results using SVM with N = 4.

Using a shorter byte length, KNN yields 99.73% accuracy,
which is a bit less than SVM, using a training time (to build
an indexing data structure to support fast nearest neighbor
search) 20% of SVM’s. KNN must store all of the training
data together with the indexing data structure in the main
memory to support fast nearest neighbor search. It also re-
quires more time to make a prediction than SVM.

With slightly longer input byte lengths, NB and MLP pro-
duce results slightly inferior to those of SVM. These two
algorithms require only moderate memory to store models for
prediction, a fact that is also reflected in the testing time cost.

2) FAMILY CLASSIFICATION
Malware family classification aims to predict the category of a
detected malware among the listed known families. Informa-
tion regarding the malware family can enable the user to ap-
ply appropriate mitigation strategies for preventing malware
infection or reducing damage from the malware. The malware
family classification results of all of the classifiers are shown
in Table 4. SVM achieves the highest accuracy of 98.47%,
while KNN and MLP show slightly lower accuracies. NB
yields an accuracy of 96.76% which is the lowest for the four
classifiers.

Fig. 10 shows the generalization performance of SVM clas-
sifiers obtained with different input byte lengths. The best
performance is obtained at L = 1024: the highest accuracy
and recall, and the second highest precision, which is slightly
less than the precision at L = 896. Inferior performance is
obtained when L is set to smaller values: When L = 256,
precision and recall are both less than 89%. The comparatively
longer input byte length required for malware family classifi-
cation to obtain the best generalization performance demon-
strates the greater complexity in malware family classification
than in malware detection: more distinguishing information is
required to differentiate malware from different families than
benignware.

3) CPU-SPECIFIC RESULTS
In this experiment, we divided the dataset into eight subsets
based on the supported CPU architectures of the samples.
Since there are insufficiently many benignware samples on
SPARC and Renesas SH to form a proper dataset, we omit
the experiments on these two architectures.

Fig. 11 shows the data distribution in the embedded 2D
space, with each unique color representing a different CPU
architecture. To enhance the readability of the figure, we use
a subset consisting of 400 samples of the dataset for visual-
ization purposes. We have confirmed that using UMAP on the
full dataset produces a layout similar to the one shown in the
figure. We can see that samples from the same CPU archi-
tecture form tight clusters. Within the clusters, benignware
samples and malware samples, as denoted respectively by
colored disks and plus signs, still show clear separability. This
result encourages us to pursue a CPU-specific classification.

Table 5 shows the results of malware detection and family
classification among specific CPU architectures. We report
only the results of SVM and KNN in the table to enhance
readability. NB and MLP show generalization performances
comparable to those of SVM and KNN.

For malware detection, SVM (L = 256 and N = 4) reaches
accuracy values greater than 99.96% on all CPU architec-
tures except on x86_64. With the same parameter settings,
KNN yields accuracy values greater than 99.73% except on
x86_64. Note that 99.96% and 99.73% are the accuracy values
obtained using the overall dataset. These results show that
CPU-specific analysis can further improve the generalization
performance of the classifiers.

For malware family classification, SVM (L = 1024, N =
4) yields accuracy values greater than 98.47% on four out
of eight CPU architectures, ARM, SPARC, Renesas SH, and
Unknown. For three of the four remaining CPU architectures,
MIPS, X86, and PowerPC, SVM produces accuracy values
very close to 98.47%. The CPU-specific analysis provides in-
ferior performance only on x86_64. KNN also yields accuracy
values greater than or very close to 98.15% on seven of the
eight CPU architectures.

Performance of malware detection and malware family
classification on x86_64 is always slightly lower than on other
platforms. A possible explanation for this result is that the ex-
ecutables collected for the x86_64 architecture might include
files from a wide range of Linux distributions, rendering the
classification tasks more complicated.

We compare the results of the two scenarios in Table 6.
Numbers in the table are the weighted averages of the numbers
reported in Table 5 according to the following equation:

Weighted Metric = 1

M

C∑

i=0

mi · Metric(i), (5)

where C is the number of CPU architectures in the experiment,
M the total number of samples in the dataset, and mi the num-
ber of samples on the i-th CPU architecture. According to the
malware detection results in the table, the weighted average

VOLUME 1, 2020 271

WAN ET AL.: EFFICIENT DETECTION AND CLASSIFICATION OF INTERNET-OF-THINGS

FIG. 11. UMAP 2D visualization of sample distribution: benignware and malware on different CPU architectures.

TABLE 5. Results of CPU-specific Analysis

TABLE 6. Result Comparison in Two Scenarios

of the accuracy values from CPU-specific SVM models is
99.96%, same as the 99.96% obtained from the overall SVM
model on the full dataset. A similar conclusion applies to

the precision and recall metrics. Moreover, the CPU-specific
experiments of family classification yields an accuracy value
of 98.47% which is identical to the result obtained from the
overall model on the full dataset. However, this time we obtain
much greater precision and recall values. A similar result can
be observed on the results from the KNN classifiers. The
improved performance using SVM and KNN confirms that
information on CPU architectures can further improve the
generalization performance of the classifiers both on malware
detection and malware family classification.

272 VOLUME 1, 2020

TABLE 7. Performance Comparison With Related Work

V. DISCUSSION
A. COMPARISON WITH RELATED WORK
In this experiment, we compare the proposed approach with
those in related work on malware detection and malware
family classification. As reviewed in section II-B, different
types of features are explored in the literature in connection
with IoT malware analysis. We implement the opcode-based
method introduced by Kang et al. [21] and the method pro-
posed by Shahzad et al. [25] which makes use of information
extracted from ELF headers. Because the cited methods suffer
from scalability problems, we use a subset of 20K ELF files
consisting of 10K malware and 10K benignware for evalua-
tion.

The results shown in Table 7 of each classifier include
time cost for feature extraction, accuracy, training time, and
testing time. Although the time cost for feature extraction
and training for the method in [25] is the fastest, its gener-
alization performance is the worst on both malware detection
(96.94% accuracy using SVM) and malware family classifi-
cation (82.94% accuracy using SVM). This result indicates
that the information in ELF headers contains considerable
discriminating information for malware detection, but that is
not enough to differentiate malware families. The accuracy of
the method in [21] performs as well as the proposed method,
but it requires much more time to extract features from files
and to perform model training. The heavy costs in time and
system resources render methods based on opcode features
not suitable for IoT devices with limited resources.

The proposed method yields the highest accuracy on mal-
ware detection (99.54% using MLP) and the second high-
est accuracy on malware family classification (96.48% using
MLP). Moreover, the time cost for feature extraction is only
0.036s. These results show that the proposed method is more
efficient and effective than existing methods.

B. LIMITATION ON MALWARE FAMILY CLASSIFICATION
In section IV-E, we observed that malware family classifica-
tion is inherently more difficult than malware detection. To

FIG. 12. Confusion matrix for malware family classification.

investigate further which malware family is the most diffi-
cult to predict correctly, we examine the confusion matrix
that stores the misclassified samples among different malware
families. Fig. 12 shows the average number of misclassified
samples in the confusion matrices obtained from 10-fold cross
validation. We can see that most of the samples other than a
portion of Mirai and Bashlite samples are classified correctly.
This indicates that the byte sequences from entry points do
not provide sufficient discriminating information for a portion
of the malware from these two classes – a problem caused
directly by the shared source code of the two types of mal-
ware. More bytes from the ELF file or other features such as
opcodes might help to improve the performance of a malware
family classifier.

VI. CONCLUSION
In this paper, we proposed a novel approach for detecting
IoT-oriented malware and classifying their families based on

VOLUME 1, 2020 273

WAN ET AL.: EFFICIENT DETECTION AND CLASSIFICATION OF INTERNET-OF-THINGS

the byte sequences extracted from ELF files. The experimen-
tal results on malware detection showed that a near optimal
accuracy greater than 99.96% could be obtained using the pro-
posed approach, and the performance can be improved further
using CPU-specific models. Our method can also determine
the malware family with greater than 98.47% accuracy. The
results show that the proposed method outperforms existing
solutions in terms of efficacy and efficiency. We believe that
promising solutions for IoT security can be developed based
on the findings of this paper.

REFERENCES
[1] M. Hung, “Leading the IoT,” Accessed: Oct. 10, 2020. [Online]. Avail-

able: https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.
pdf

[2] G. D. Maayan, “The IoT rundown for 2020: Stats, risks, and solution,”
Accessed: Jul. 14, 2020. [Online]. Available: https://securitytoday.com/
articles/2020/01/13/the-iot-rundown-for-2020.aspx

[3] S.-M. Cheng, P.-Y. Chen, C.-C. Lin, and H.-C. Hsiao, “Traffic-aware
patching for cyber security in mobile IoT,” IEEE Commun. Mag.,
vol. 55, no. 7, pp. 29–35, Jul. 2017.

[4] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the Internet of
Things: A survey of existing protocols and open research issues,” IEEE
Commun. Surveys Tut., vol. 17, no. 3, pp. 1294–1312, Jan. 2015.

[5] F-Secure, “Attack Landscape H2 2019,” , Accessed: Jul. 14, 2020. [On-
line]. Available: https://blog-assets.f-secure.com/wp-content/uploads/
2020/03/04101313/attack-landscape-h22019-final.pdf.

[6] Anna-senpai, “Mirai source code,” Accessed: Oct. 10, 2020. [Online].
Available: https://github.com/jgamblin/Mirai-Source-Code/

[7] W. Li, Z. Su, K. Zhang, A. Benslimane, and D. Fang, “Defending mali-
cious check-in using big data analysis of indoor positioning system: An
access point selection approach,” IEEE Trans. Netw. Sci. Eng., pp. 1–1,
Aug. 2020.

[8] A. Costin and J. Zaddach, “IoT malware: Comprehensive survey, anal-
ysis framework and case studies,” in Blackhat USA, Aug. 2018.

[9] Q.-D. Ngo, H.-T. Nguyen, L.-C. Nguyen, and D.-H. Nguyen, “A survey
of IoT malware and detection methods based on static features,” ICT
Exp., Apr. 2020.

[10] A. Azmoodeh, A. Dehghantanha, and K.-K. R. Choo, “Robust mal-
ware detection for Internet of (Battlefield) Things devices using deep
eigenspace learning,” IEEE Trans. Sustain. Comput., vol. 4, no. 1,
pp. 88–95, Jan.-Mar. 2018.

[11] H. HaddadPajouh, A. Dehghantanha, R. Khayami, and K.-K. R. Choo,
“A deep recurrent neural network based approach for Internet of
Things malware threat hunting,” Future Gener. Comput. Syst., vol. 85,
pp. 88–96, Mar. 2018.

[12] H. Darabian, A. Dehghantanha, S. Hashemi, S. Homayoun, and K.-K.
R. Choo, “An opcode-based technique for polymorphic Internet of
Things malware detection,” Concurrency Comput.: Pract. Experience,
vol. 32, no. 6, p. e5173, Feb. 2020.

[13] “Virustotal,” Accessed: Oct. 10, 2020. [Online]. Available: https://www.
virustotal.com

[14] A. Marzano et al., “The evolution of bashlite and mirai IoT botnets,” in
Proc. IEEE Int. Symp. Comput. Commun., Jun. 2018, pp. 813–818.

[15] S. Edwards and I. Profetis, “Hajime: Analysis of a decentralized internet
worm for IoT devices,” Rapidity Netw., vol. 16, 2016.

[16] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin, “Measure-
ment and analysis of Hajime, a peer-to-peer IoT Botnet,” in Proc. Netw.
Distrib. Syst. Secur. Symp., Feb. 2019.

[17] M. J. Bohio, “Analyzing a backdoor/bot for the MIPS
platform,” 2015. Accessed: Oct. 10, 2020. [Online]. Available:
https://www.sans.org/reading-room/whitepapers/malicious/analyzing-
backdoor-bot-mips-platform-35902

[18] P. Kalnai and J. Horejsi, “DDoS trojan: A malicious concept that con-
quered the elf format,” in Proc. Virus Bull. Conf., 2015, pp. 62–70.

[19] “XORDDoS, kaiji botnet malware variants target exposed
docker servers,” Accessed: Oct. 10, 2020. [Online]. Available:
https://blog.trendmicro.com/trendlabs-security-intelligence/xorddos-
kaiji-botnet-malware-variants-target-exposed-docker-servers/

[20] Y. Ding and S. Zhu, “Malware detection based on deep learning algo-
rithm,” Neural Comput. Appl., vol. 31, no. 2, pp. 461–472, Feb. 2019.

[21] B. Kang, S. Y. Yerima, K. McLaughlin, and S. Sezer, “N-opcode anal-
ysis for android malware classification and categorization,” in Proc.
Cyber Secur., Jun. 2016, pp. 1–7.

[22] H. Alasmary et al., “Analyzing and detecting emerging Internet of
Things malware: A graph-based approach,” IEEE Internet Things J.,
vol. 6, no. 5, pp. 8977–8988, Jul. 2019.

[23] H.-T. Nguyen, Q.-D. Ngo, and V.-H. Le, “IoT botnet detection approach
based on PSI graph and DGCNN classifier,” in Proc. Int. Conf. Inf.
Commun. Signal Process., Sep. 2018, pp. 118–122.

[24] J. Su, V. D. Vasconcellos, S. Prasad, S. Daniele, Y. Feng, and K. Sakurai,
“Lightweight classification of IoT malware based on image recogni-
tion,” in Proc. IEEE Comput. Softw. Appl. Conf., vol. 2, Jul. 2018,
pp. 664–669.

[25] F. Shahzad and M. Farooq, “ELF-Miner: Using structural knowledge
and data mining methods to detect new (linux) malicious executables,”
Knowl. Inf. Syst., vol. 30, no. 3, pp. 589–612, Mar. 2012.

[26] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining
methods for detection of new malicious executables,” in Proc. IEEE
Symp. Secur. Privacy, May 2000, pp. 38–49.

[27] B. Li, Y. Zhang, J. Yao, and T. Yin, “MDBA: Detecting malware based
on bytes n-gram with association mining,” in Proc. Int. Conf. Telecom-
mun., Apr. 2019, pp. 227–232.

[28] T. Ban, R. Isawa, S. Guo, D. Inoue, and K. Nakao, “Efficient malware
packer identification using support vector machines with spectrum ker-
nel,” in Proc. Asia Joint Conf. Inf. Secur., Jul. 2013, pp. 69–76.

[29] E. Foundation, “IoT commercial adoption survey 2019 results,” 2019,
Accessed: 2020-10-10.

[30] “binwalk,” Accessed: Oct. 10, 2020. [Online]. Available: https://tools.
kali.org/forensics/binwalk

[31] R. Isawa, T. Ban, S. Guo, D. Inoue, and K. Nakao, “An accurate
packer identification method using support vector machine,” IEICE
Trans. Fundamentals Electron., Commun. Comput. Sci., vol. 97, no. 1,
pp. 253–263, Jan. 2014.

[32] “Radare2,” Accessed: Oct. 10, 2020. [Online]. Available: https://github.
com/radareorg/radare2

[33] “pwntools,” Accessed: Oct. 10, 2020. [Online]. Available: hhttps://
github.com/Gallopsled/pwntools

[34] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, 2011.

[35] L. McInnes, J. Healy, N. Saul, and L. Grossberger, “UMAP: Uniform
manifold approximation and projection,” J. Open Source Softw., vol. 3,
no. 29, p. 861, Sep. 2018.

TZU-LING WAN received the B.E. and M.E.
degrees in computer science and information en-
gineering from the National Taiwan University of
Science and Technology, Taipei, Taiwan, in 2018
and 2020, respectively. Her primary research inter-
ests include security for IoT and machine learning.

TAO BAN (Member, IEEE) received the B.S. de-
gree from the Department of Automatic Control,
Xi’an Jiaotong University, Xi’an, China, in 1999,
the M.E. degree from the Department of Automa-
tion, Tsinghua University, Beijing, China, in 2003,
and the Ph.D. degree from Kobe University, Kobe,
Japan, in 2006. He is currently a Senior Researcher
at Cybersecurity Research Institute, National Insti-
tute of Information and Communications Technol-
ogy, Tokyo, Japan. His research interests include
network security, malware analysis, machine learn-

ing and data mining for security, etc.

274 VOLUME 1, 2020

https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
https://securitytoday.com/articles/2020/01/13/the-iot-rundown-for-2020.aspx
https://blog-assets.f-secure.com/wp-content/uploads/2020/03/04101313/attack-landscape-h22019-final.pdf
https://github.com/jgamblin/Mirai-Source-Code/
https://www.virustotal.com
https://www.sans.org/reading-room/whitepapers/malicious/analyzing-backdoor-bot-mips-platform-35902
https://blog.trendmicro.com/trendlabs-security-intelligence/xorddos-kaiji-botnet-malware-variants-target-exposed-docker-servers/
https://tools.kali.org/forensics/binwalk
https://github.com/radareorg/radare2
hhttps://github.com/Gallopsled/pwntools

SHIN-MING CHENG (Member, IEEE) received
the B.S. and Ph.D. degrees in computer science
and information engineering from National Taiwan
University, Taipei, Taiwan, in 2000 and 2007, re-
spectively. He was a Postdoctoral Research Fellow
at the Graduate Institute of Communication Engi-
neering, National Taiwan University, from 2007 to
2012. Since 2012, he has been on the faculty in the
Department of Computer Science and Information
Engineering, National Taiwan University of Sci-
ence and Technology, Taipei, where he is currently

an Associate Professor. Since 2017, he has been with the Research Center
for Information Technology Innovation, Academia Sinica, Taipei, where he
is currently a joint Associate Research Fellow. His current research interests
are secure mechanism design and security-related platform development in
4G/5G networks and IoT networks. Recently, he is investigating the robust-
ness issue in machine learning. He received 2014 K. T. Li Young Researcher
Award from ACM Taipei/Taiwan Chapter, IEEE PIMRC 2013 Best Paper
Award, and CISC 2020 Best Paper Award.

YEN-TING LEE received the B.E. degree in
computer science and information engineering
from National Sun Yat-sen University, Kaohsiung,
Taiwan, in 2018 and the M.E. degree from Na-
tional Taiwan University of Science and Technol-
ogy, Taipei, Taiwan, in 2020. His current research
interests include security for IoT and machine
learning.

BO SUN received the B.E. degree in science
from Jilin University, Changchun, China in 2007,
the M.E. degree in engineering from Yokohama
National University, Yokohama, Japan in 2012,
and the Ph.D. degree in engineering from Waseda
University, Tokyo, Japan in 2018. He was at
the University of Waseda as a Research Asso-
ciate from 2016 to 2018, and a Researcher at
the National Institute of Information and Commu-
nications Technology from 2018 to 2020. He is
currently an Assistant Professor at the Saitama In-

stitute of Technology, a collaborative Researcher at the National Institute of
Information and Communications Technology, and a Visiting Researcher at
the University of Waseda. His research interests include web security, mobile
security, and offensive security.

RYOICHI ISAWA received the B.E. and M.E.
degrees from the University of Tokushima,
Tokushima, Japan at in 2004 and 2006, respec-
tively, and the Ph.D. degree from Kobe Univer-
sity, Kobe, Japan, in 2012. He is currently a Se-
nior Researcher at the National Institute of Infor-
mation and Communications Technology (NICT),
Japan. His current research interests include mal-
ware analysis, network security, and hardware se-
curity.

TAKESHI TAKAHASHI (Member, IEEE) received
the Ph.D. degree in telecommunication from
Waseda University, Tokyo, Japan, in 2005. He was
at the Tampere University of Technology as a Re-
searcher from 2002 to 2004, and Roland Berger,
Ltd., as a Business Consultant, from 2005 to 2009.
Since 2009, he has been with the National Institute
of Information and Communications Technology,
where he is currently a Research Manager. His pri-
mary research focus is cybersecurity. He is a mem-
ber of the Association for Computing Machinery,

and the Institute of Electronics, Information and Communication Engineers.
He received several awards including Funai Information Technology Incen-
tive Award and ITU Association Japan Incentive Award. He is a CISSP.

DAISUKE INOUE (Member, IEEE) received the
B.E. and M.E. degrees in electrical and computer
engineering and the Ph.D. degree in engineer-
ing from Yokohama National University, Yoko-
hama, Japan in 1998, 2000, and 2003, respectively.
He joined Communications Research Laboratory
(CRL), Japan, in 2003. CRL was relaunched as
National Institute of Information and Communi-
cations Technology (NICT) in 2004, where he is
currently the Director of Cybersecurity Laboratory.
He received several awards including the best pa-

per award at the 2002 Symposium on Cryptography and Information Security
(SCIS 2002), the commendation for science and technology by the Minister
of MEXT, Japan, in 2009, the Good Design Award 2013, the Asia-Pacific
Information Security Leadership Achievements (ISLA) 2014, the award for
contribution to Industry-Academia-Government Collaboration by the Minis-
ter of MIC, Japan, in 2016, and the Maejima Hisoka Award, in 2018.

VOLUME 1, 2020 275

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

